题目内容
【题目】已知二次函数满足,对任意有恒成立.
(1)求的解析式;
(2)若,对于实数,记函数在区间上的最小值为,且恒成立,求实数的取值范围.
【答案】(1);(2).
【解析】
(1)由题意得出,即,可得出,由此可得出不等式恒成立,且当时等号成立,可得出,可解出实数的值,可得出的值,由此可得出函数的解析式;
(2)作出函数在上的图象,然后分、、三种情况讨论,分析函数在区间上的单调性,得出的表达式,然后利用参变量分离法求出满足不等式恒成立的实数的取值范围.
(1)对任意的有恒成立,当时,则,
所以,,可得,,
所以不等式在上恒成立,即二次不等式在上恒成立,即二次不等式在上恒成立,当时等号成立,
,解得,,因此,;
(2)由题意可得.
作出函数在区间上的图象如下图所示:
当时,.
当时,,令,可得,得,
此时.
由图象可知,当时,函数在区间上的最小值为,
由,得,可得,
,则,
由于双勾函数在区间上单调递增,当时,,
则,此时,;
当时,函数在区间上的最小值为,
由,得,即对任意的恒成立,
则,解得;
当时,函数在区间上单调递增,
函数在区间上的最小值为,
由,可得,即.
函数在区间上单调递增,,,
此时,.
综上所述,实数的取值范围是.
【题目】某公司为了解用户对其产品的满意度,从A、B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:
A地区: | 62 | 73 | 81 | 92 | 95 | 85 | 74 | 64 | 53 | 76 |
78 | 86 | 95 | 66 | 97 | 78 | 88 | 82 | 76 | 89 | |
B地区: | 73 | 83 | 62 | 51 | 91 | 46 | 53 | 73 | 64 | 82 |
93 | 48 | 95 | 81 | 74 | 56 | 54 | 76 | 65 | 79 |
(Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度的平均值及分散程度(不要求算出具体值,给出结论即可):
(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个等级:
满意度评分 | 低于70分 | 70分到89分 | 不低于90分 |
满意度等级 | 不满意 | 满意 | 非常满意 |
记事件C:“A地区用户的满意度等级高于B地区用户的满意度等级”,假设两地区用户的评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率。
【题目】随着电商的快速发展,快递业突飞猛进,到目前,中国拥有世界上最大的快递市场.某快递公司收取快递费用的标准是:重量不超过的包裹收费10元;重量超过的包裹,除收费10元之外,每超过(不足,按计算)需再收5元.
该公司将最近承揽的100件包裹的重量统计如下:
包裹重量(单位:) | 1 | 2 | 3 | 4 | 5 |
包裹件数 | 43 | 30 | 15 | 8 | 4 |
公司对近60天,每天揽件数量统计如下表:
包裹件数范围 | 0~100 | 101~200 | 201~300 | 301~400 | 401~500 |
包裹件数(近似处理) | 50 | 150 | 250 | 350 | 450 |
天数 | 6 | 6 | 30 | 12 | 6 |
以上数据已做近似处理,并将频率视为概率.
(1)计算该公司未来5天内恰有2天揽件数在101~300之间的概率;
(2)①估计该公司对每件包裹收取的快递费的平均值;
②根据以往的经验,公司将快递费的三分之一作为前台工作人员的工资和公司利润,剩余的用作其他费用.目前前台有工作人员3人,每人每件揽件不超过150件,日工资100元.公司正在考虑是否将前台工作人员裁减1人,试计算裁员前后公司每日利润的数学期望,若你是公司老总,是否进行裁减工作人员1人?