题目内容
【题目】△ABC的内角A,B,C的对边分别为a,b,c,已知.
(1)求C;
(2)若c=,△ABC的面积为,求△ABC的周长.
【答案】(1) C= (2) △ABC的周长为+
【解析】试题分析:(1)由正弦定理得到2cosCsinC=sinC,进而得到cosC=,∴C=;(2)根据第一问的已求角,可由余弦定理得到(a+b)2﹣3ab=3,根据面积公式得到ab=16,结合第一个式子得到结果。
解析:
(Ⅰ)∵在△ABC中,0<C<π,∴sinC≠0
利用正弦定理化简得:2cosC(sinAcosB+sinBcosA)=sinC,
整理得:2cosCsin(A+B)=sinC,
即2cosCsin(π﹣(A+B))=sinC,2cosCsinC=sinC
∴cosC=,∴C=
(Ⅱ)由余弦定理得3=a2+b2﹣2ab,
∴(a+b)2﹣3ab=3,
∵S= absinC= ab=, ∴ab=16,
∴(a+b)2﹣48=3,∴a+b=,
∴△ABC的周长为+ .
【题目】(导学号:05856317)为了调查“小学成绩”与“中学成绩”两个变量之间是否存在相关关系,某科研机构将所调查的结果统计如下表所示:
中学成绩不优秀 | 中学成绩优秀 | 总计 | |
小学成绩优秀 | 5 | 20 | 25 |
小学成绩不优秀 | 10 | 5 | 15 |
总计 | 15 | 25 | 40 |
则下列说法正确的是( )
参考数据:
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 | 0.001 |
k0 | 0.46 | 0.71 | 1.32 | 2.07 | 2.71 | 3.84 | 5.024 | 6.635 | 7.879 | 10.828 |
A. 在犯错误的概率不超过0.1的前提下,认为“小学成绩与中学成绩无关”
B. 在犯错误的概率不超过0.1的前提下,认为“小学成绩与中学成绩有关”
C. 在犯错误的概率不超过0.01的前提下,认为“小学成绩与中学成绩无关”
D. 在犯错误的概率不超过0.01的前提下,认为“小学成绩与中学成绩有关”