题目内容
16.方程组$\left\{\begin{array}{l}{x+y=3}\\{x-2y=-3+a}\end{array}\right.$的解满足$\left\{\begin{array}{l}{x≥0}\\{y≥0}\end{array}\right.$,求a的取值范围.分析 解方程组可得关于a的不等式组,解不等式组可得.
解答 解:解方程组$\left\{\begin{array}{l}{x+y=3}\\{x-2y=-3+a}\end{array}\right.$可得$\left\{\begin{array}{l}{x=1+\frac{a}{3}}\\{y=2-\frac{a}{3}}\end{array}\right.$,
∵$\left\{\begin{array}{l}{x≥0}\\{y≥0}\end{array}\right.$,∴$\left\{\begin{array}{l}{1+\frac{a}{3}≥0}\\{2-\frac{a}{3}≥0}\end{array}\right.$,解得-3≤a≤6.
点评 本题考查不等式的解法,涉及方程组的解集,属基础题.
练习册系列答案
相关题目