题目内容

在△ABC中,AB=15,∠BCA=120°.若△ABC所在平面α外一点P到A、B、C的距离都是14,则直线PC与平面ABC所成角的正弦值为(  )
A.
13
14
B.
11
14
C.
9
14
D.
1
2
作PO⊥α于点O,连接OA、OB、OC,
∵PA=PB=PC,
∴OA=OB=OC.
∴O是△ABC的外心.
由正弦定理得出2OA=
AB
sin∠BCA
=
15
3
2
=10
3

OA=5
3

Rt△POC中,PO=
PC2-OC2
=11.
sin∠PCO=
PO
PC
=
11
14

故选B.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网