题目内容

2.在Rt△ABC中,∠C=90°,当n>2时,有cn>an+bn成立,请你类比直角三角形的这个性质,猜想一下空间四面体的性质.

分析 线的关系类比到面的关系,即可得出结论.

解答 解:线的关系类比到面的关系,在空间四面体ABCD中,
猜测:S△BCD2=S△ABC2+S△ACD2+S△ADB2.理由如下:
如图作AE⊥CD连BE,则BE⊥CD.
S△BCD2 =$\frac{1}{4}$CD2•BE2 =$\frac{1}{4}$CD2(AB2+AE2
=$\frac{1}{4}$(AC2+AD2)(AB2+AE2
=$\frac{1}{4}$(AC2AB2 +AD2AB2 +AC2AE2+AD2AE2
=$\frac{1}{4}$(AC2AB2 +AD2AB2+CD2AE2
=S△ABC2+S△ACD2+S△ADB2

点评 本题考查类比推理,体现了数形结合的数学思想.其中由二维到三维的类比推理要注意点的性质往往推广为线的性质,线的性质往往推广为面的性质.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网