题目内容

16.设函数f(x)=$\frac{1}{2}$-$\frac{1}{{2}^{x}+1}$
(1)证明:函数f(x)是奇函数;
(2)证明:函数f(x)在R上是增函数.

分析 (1)利用奇函数的定义,即可证明;
(2)利用导数大于0,即可证明.

解答 证明:(1)函数的定义域为R,
∴f(x)=$\frac{{2}^{x}-1}{2({2}^{x}+1)}$
∴f(-x)=$\frac{{2}^{-x}-1}{2({2}^{-x}+1)}$=-$\frac{{2}^{x}-1}{2({2}^{x}+1)}$=-f(x),
∴函数f(x)是奇函数;
(2)∵f(x)=$\frac{1}{2}$-$\frac{1}{{2}^{x}+1}$
∴f′(x)=-$\frac{{-2}^{x}ln2}{({2}^{x}+1)^{2}}$>0
∴函数f(x)在R上是增函数.

点评 本题考查函数的单调性、奇偶性,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网