题目内容

15.利用二项式定理证明:49n+16n-1(n∈N*)能被16整除.

分析 49n+16n-1=(48+1)n+16n-1=${C}_{n}^{0}•4{8}^{n}$+${C}_{n}^{1}•4{8}^{n-1}$+…+${C}_{n}^{n-1}$•48+${C}_{n}^{n}$+16n-1,即可证明结论.

解答 证明:49n+16n-1=(48+1)n+16n-1=${C}_{n}^{0}•4{8}^{n}$+${C}_{n}^{1}•4{8}^{n-1}$+…+${C}_{n}^{n-1}$•48+${C}_{n}^{n}$+16n-1
=${C}_{n}^{0}•4{8}^{n}$+${C}_{n}^{1}•4{8}^{n-1}$+…+${C}_{n}^{n-1}$•48+16n
48是可以被16整除的,16n也是可以被整除的,所以${C}_{n}^{0}•4{8}^{n}$+${C}_{n}^{1}•4{8}^{n-1}$+…+${C}_{n}^{n-1}$•48+16n可以被16整除.
所以49n+16n-1(n∈N*)能被16整除..

点评 本题考查整除性问题,考查二项式定理的运用,利用49n=(48+1)n是关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网