题目内容

【题目】如图所示,过点P分别做圆O的切线PA、PB和割线PCD,弦BE交CD于F,满足P、B、F、A四点共圆.
(Ⅰ)证明:AE∥CD;
(Ⅱ)若圆O的半径为5,且PC=CF=FD=3,求四边形PBFA的外接圆的半径.

【答案】( I)证明:连接AB.
∵P、B、F、A四点共圆,∴∠PAB=∠PFB.
又PA与圆O切于点A,∴∠PAB=∠AEB,
∴∠PFB=∠AEB∴AE∥CD.
( II)解:因为PA、PB是圆O的切线,所以P、B、O、A四点共圆,
由△PAB外接圆的唯一性可得P、B、F、A、O共圆,
四边形PBFA的外接圆就是四边形PBOA的外接圆,∴OP是该外接圆的直径.
由切割线定理可得PA2=PCPD=3×9=27

∴四边形PBFA的外接圆的半径为

【解析】(Ⅰ)连接AB,利用P、B、F、A四点共圆,PA与圆O切于点A,得出两组角相等,即可证明:AE∥CD;(Ⅱ)四边形PBFA的外接圆就是四边形PBOA的外接圆,OP是该外接圆的直径,由切割线定理可得PA,即可求四边形PBFA的外接圆的半径.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网