题目内容
【题目】要测量电视塔AB的高度,在C点测得塔顶的仰角是45°,在D点测得塔顶的仰角是30°,并测得水平面上的∠BCD=120°,CD=40m,则电视塔的高度是( )
A.30m
B.40m
C. m
D. m
【答案】B
【解析】解:由题题意,设AB=x,则BD= x,BC=x 在△DBC中,∠BCD=120°,CD=40,
∴根据余弦定理,得BD2=BC2+CD2﹣2BCCDcos∠DCB
即:( x)2=(40)2+x2﹣2×40xcos120°
整理得x2﹣20x﹣800=0,解之得x=40或x=﹣20(舍)
即所求电视塔的高度为40米.
故选B.
设出AB=x,进而根据题意将BD、DC用x来表示,然后在△DBC中利用余弦定理建立方程求得x,即可得到电视塔的高度.
练习册系列答案
相关题目
【题目】某批发市场对某种商品的周销售量(单位:吨)进行统计,最近100周的统计结果如下表所示:
周销售量 | 2 | 3 | 4 |
频数 | 20 | 50 | 30 |
(1)根据上面统计结果,求周销售量分别为2吨,3吨和4吨的频率;
(2)已知每吨该商品的销售利润为2千元,ξ表示该种商品两周销售利润的和(单位:千元),若以上述频率作为概率,且各周的销售量相互独立,求ξ的分布列和数学期望.