题目内容
【题目】已知椭圆 上两个不同的点A,B关于直线y=mx+ 对称.
(1)求实数m的取值范围;
(2)求△AOB面积的最大值(O为坐标原点).
【答案】
(1)解:由题意,可设直线AB的方程为x=﹣my+n,代入椭圆方程 ,可得(m2+2)y2﹣2mny+n2﹣2=0,
设A(x1,y1),B(x2,y2).由题意,△=4m2n2﹣4(m2+2)(n2﹣2)=8(m2﹣n2+2)>0,
设线段AB的中点P(x0,y0),则 .x0=﹣m× +n= ,
由于点P在直线y=mx+ 上,∴ = + ,
∴ ,代入△>0,可得3m4+4m2﹣4>0,
解得m2 ,∴ 或m
(2)解:直线AB与x轴交点横坐标为n,
∴S△OAB= = |n| = ,
由均值不等式可得:n2(m2﹣n2+2) = ,
∴S△AOB = ,当且仅当n2=m2﹣n2+2,即2n2=m2+2,又∵ ,解得m= ,
当且仅当m=
【解析】(1)由题意,可设直线AB的方程为x=﹣my+n,代入椭圆方程可得(m2+2)y2﹣2mny+n2﹣2=0,设A(x1 , y1),B(x2 , y2).可得△>0,设线段AB的中点P(x0 , y0),利用中点坐标公式及其根与系数的可得P,代入直线y=mx+ ,可得 ,代入△>0,即可解出.(2)直线AB与x轴交点横坐标为n,可得S△OAB= ,再利用均值不等式即可得出.
【题目】某校后勤处为跟踪调查该校餐厅的当月的服务质量,兑现奖惩,从就餐的学生中随机抽出100位学生对餐厅服务质量打分(5分制),得到如图柱状图.
(Ⅰ)从样本中任意选取2名学生,求恰好有1名学生的打分不低于4分的概率;
(Ⅱ)若以这100人打分的频率作为概率,在该校随机选取2名学生进行打分(学生打分之间相互独立)记X表示两人打分之和,求X的分布列和E(X).
(Ⅲ)根据(Ⅱ)的计算结果,后勤处对餐厅服务质量情况定为三个等级,并制定了对餐厅相应的奖惩方案,如表所示,设当月奖金为Y(单位:元),求E(Y).
服务质量评分X | X≤5 | 6≤X≤8 | X≥9 |
等级 | 不好 | 较好 | 优良 |
奖惩标准(元) | ﹣1000 | 2000 | 3000 |