题目内容
12.如果cos(π-A)=-$\frac{1}{2}$,那么cosA的值为( )A. | --$\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | $-\frac{{\sqrt{3}}}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
分析 由已知利用诱导公式即可化简求值.
解答 解:cos(π-A)=-cosA=-$\frac{1}{2}$,可解得:cosA=$\frac{1}{2}$.
故选:B.
点评 本题主要考查了诱导公式在三角函数化简求值中的应用,属于基础题.
练习册系列答案
相关题目
17.设x是正数,则“a>1”是“x+$\frac{a}{x}$>1”的( )
A. | 充分不必要条件 | B. | 必要不充分条件 | ||
C. | 充分必要条件 | D. | 既不充分也不必要条件 |
17.已知直线l的参数方程为$\left\{\begin{array}{l}x=1+\frac{t}{2}\\ y=2+\frac{{\sqrt{3}}}{2}t\end{array}\right.$(t为参数),则其直角坐标方程为( )
A. | $\sqrt{3}$x+y+2-$\sqrt{3}$=0 | B. | $\sqrt{3}$x-y+2-$\sqrt{3}$=0 | C. | x-$\sqrt{3}$y+2-$\sqrt{3}$=0 | D. | x+$\sqrt{3}$y+2-$\sqrt{3}$=0 |
1.已知sinx=-$\frac{\sqrt{2}}{2}$、$\frac{π}{2}$<x<$\frac{3π}{2}$,则角x=( )
A. | $\frac{4π}{3}$ | B. | $\frac{3π}{4}$ | C. | $\frac{5π}{4}$ | D. | $\frac{7π}{4}$ |