题目内容
直线与抛物线交于两点,为原点,如果,那么直线恒经过定点的坐标为__________________
设l:y=kx+b A(x1,y1) B(x2,y2)
k^2x^2+[2kb-4]x+b^2=0 x1 x2=b^2/k^2 x1+ x2 =[4-2kb]/k^2
OA*OB= x1 x2+ y1 y2=(1+k^2)x1x2+bk(x1+x2)+b^2=-4 b^2+4kb+4k^2=0
b=-2k
y=kx+b=kx-2k=k(x-2) C是(2,0)
k^2x^2+[2kb-4]x+b^2=0 x1 x2=b^2/k^2 x1+ x2 =[4-2kb]/k^2
OA*OB= x1 x2+ y1 y2=(1+k^2)x1x2+bk(x1+x2)+b^2=-4 b^2+4kb+4k^2=0
b=-2k
y=kx+b=kx-2k=k(x-2) C是(2,0)
练习册系列答案
相关题目