题目内容

甲船在A处观察到乙船在它的北偏东60°的方向,两船相距a海里,乙船正在向北行驶,若甲船的速度是乙船的
3
倍,甲船为了尽快追上乙船,应取北偏东θ方向前进,则θ=(  )
A、15°B、30°
C、45°D、60°
考点:解三角形的实际应用
专题:应用题,解三角形
分析:根据题意画出图形,求出∠CAB与∠B的度数,设出追上乙船的时间,表示出BC与AC,在三角形ABC中,利用正弦定理列出关系式,即可求出θ的度数.
解答: 解:根据题意得:∠CAB=60°-θ,∠B=120°,设追上乙船的时间为x,则有BC=x,AC=
3
x,
在△ABC中,利用正弦定理
x
sin(60°-θ)
=
3
x
sin120°

∴sin(60°-θ)=
1
2

∴60°-θ=30°,即θ=30°.
故选:B.
点评:此题考查了正弦定理,以及特殊角的三角函数值,熟练掌握正弦定理是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网