题目内容
【题目】2018年中秋季到来之际,某超市为了解中秋节期间月饼的销售量,对其所在销售范围内的1000名消费者在中秋节期间的月饼购买量(单位:)进行了问卷调查,得到如下频率分布直方图:
(1)求频率分布直方图中的值;
(2)已知该超市所在销售范围内有20万人,并且该超市每年的销售份额约占该市场总量的,请根据人均月饼购买量估计该超市应准备多少吨月饼恰好能满足市场需求?
(3)由频率分布直方图可以认为,该销售范围内消费者的月饼购买量服从正态分布,其中样本平均数作为的估计值,样本标准差作为的估计值,设表示从该销售范围内的消费者中随机抽取10名,其月饼购买量位于的人数,求的数学期望.
附:经计算得,若随机变量服从正态分布,则,.
【答案】(1);(2)12.08;(3)6.827
【解析】
(1)由频率分布直方图中的面积和为1,直接求解.
(2)由频率分布直方图直接计算人均月饼购买量.
(3)利用二项分布的性质求解.
(1)由 ,得.
(2)由频率分布直方图可得人均月饼购买量为 ,
所以万克=吨.
即该超市应准备12.08吨月饼恰好能满足市场需求.
(3)由(2)知,,计算得,,
所以.
由题知,所以.
练习册系列答案
相关题目
【题目】从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到频数分布表和频率分布直方图如下.
组号 | 分组 | 频数 |
1 | [0,2) | 6 |
2 | [2,4) | 8 |
3 | [4,6) | 17 |
4 | [6,8) | 22 |
5 | [8,10) | 25 |
6 | [10,12) | 12 |
7 | [12,14) | 6 |
8 | [14,16) | 2 |
9 | [16,18) | 2 |
合计 | 100 |
(1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的频率;
(2)求频率分布直方图中的a,b的值.