搜索
题目内容
已知函数
,求使
成立的
的取值范围。(10分)
试题答案
相关练习册答案
当
时,
,
,当
时,
,
,当
时 ,
,
试题分析:由已知
,即
, ……2分
两边都除以
得,
.
设
则
,不等式可化为
,
,即
. ……7分
当
时,
,
, ……8分
当
时,
,
, ……9分
当
时 ,
,
. ……10分
点评:函数的性质及其应用历来是考查的重点,要把各种函数的性质联系起来,综合灵活应用.
练习册系列答案
1加1阅读好卷系列答案
专项复习训练系列答案
初中语文教与学阅读系列答案
阅读快车系列答案
完形填空与阅读理解周秘计划系列答案
英语阅读理解150篇系列答案
奔腾英语系列答案
标准阅读系列答案
53English系列答案
考纲强化阅读系列答案
相关题目
(本小题满分14分)
若函数
对任意的实数
,
,均有
,则称函数
是区间
上的“平缓函数”.
(1) 判断
和
是不是实数集R上的“平缓函数”,并说明理由;
(2) 若数列
对所有的正整数
都有
,设
,
求证:
.
(本小题满分10分)已知函数
处取得极值2。
(Ⅰ)求函数
的解析式;
(Ⅱ)当m满足什么条件时,
在区间
为增函数;
已知函数
的图像与
轴有两个交点
(1)设两个交点的横坐标分别为
试判断函数
有没有最大值或最小值,并说明理由.
(2)若
与
在区间
上都是减函数,求实数
的取值范围.
下列四组函数中,表示相同函数的一组是( )
A.
B.
C.
D.
(12分)函数
为奇函数,且在
上为增函数,
, 若
对所有
都成立,求
的取值范围。
(10分)设
是定义在
上的单调增函数,满足
,
,
求(1)
;
(2)若
,求
的取值范围。
定义新运算“&”与“
”:
,
,则函数
是( )
A.奇函数
B.偶函数
C.非奇非偶函数
D.既是奇函数又是偶函数
已知
在区间
上是增函数,实数a组成几何A,设关于x的方程
的两个非零实根
,实数m使得不等式
使得对任意
及
恒成立,则m的解集是( )
A.
B.
C.
D.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总