题目内容

已知数列{an}满足递推关系式:an+2an-an+12=tn(t-1),(n∈N*),且a1=1,a2=t.(t为常数,且t>1)
(1)求a3
(2)求证:{an}满足关系式an+2-2tan+1+tan=0,(n∈N*
(3)求证:an+1>an≥1(n∈N*).
(1)由a3a1-a22=t(t-1)和a1=1,a2=t
∴a3=2t2-t…(4分)
(2)由an+2an-an+12=tn(t-1),(n∈N*
得an+1an-1-an2=tn-1(t-1)(n≥2),
再由上两式相除得到:∴an+2an-an+12=tan+1an-1-tan2
∴an(an+2+tan)=an+1(an+1+tan-1
an+2+tan
an+1
=
an+1tan-1
an

{
an+2+tan
an+1
}
为常数列
an+2+tan
an+1
=
a3+ta1
a2

而a3+ta1=2t2
an+2+tan
an+1
=2t

即an+2-2tan+1+tan=0.…(9分)
(3)由t>1知:an+2an>an+12≥0
∴an+2an>0
故an+2与an同号
而a1=1>0,a2=t>0.
故an>0.
a
n
+2
an
a2n+1

an+2
an+1
an+1
an

an+1
an
an
an-1
>…>
a2
a1
=t>1

∴an+1>an
∴an≥1
∴an+1>an≥1.…(14分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网