题目内容
【题目】如图所示,等腰梯形ABCD的底角A等于60°.直角梯形ADEF所在的平面垂直于平面 ABCD,∠EDA=90°,且ED=AD=2AF=2AB=2.
(Ⅰ)证明:平面ABE⊥平面EBD;
(Ⅱ)点M在线段EF上,试确定点M的位置,使平面MAB与平面ECD所成的角的余弦值为 .
【答案】(I)证明:∵平面ABCD⊥平面ADEF,平面ABCD∩平面ADEF=AD,ED⊥AD,ED平面ADEF, ∴ED⊥平面ABCD,∵AB平面ABCD,
∴ED⊥AD,
∵AB=1,AD=2,∠BAD=60°,
∴BD= = ,
∴AB2+BD2=AD2 , ∴AB⊥BD,
又BD平面BDE,ED平面BDE,BD∩ED=D,
∴AB⊥平面BDE,又AB平面ABE,
∴平面ABE⊥平面EBD.
(II)解:以B为原点,以BA,BD为x轴,y轴建立空间直角坐标系B﹣xyz,
则A(1,0,0),B(0,0,0),C(﹣ , ,0),D(0, ,0),E(0, ,2),
F(1,0,1),则 =( , ,0), =(0,0,2), =(1,0,0), =(1,﹣ ,﹣1),
设 =λ =(λ,﹣ λ,﹣λ)(0≤λ≤1),则 = + =(λ, ﹣ ,2﹣λ),
设平面CDE的法向量为 =(x1 , y1 , z1),平面ABM的法向量为 =(x2 , y2 , z2),
则 , ,
∴ , ,
令y1=1得 =(﹣ ,1,0),令y2=2﹣λ得 =(0,2﹣λ, ),
∴cos< >= = = ,解得λ= ,
∴当M为EF的中点时,平面MAB与平面ECD所成的角的余弦值为 .
【解析】(I)计算BD,根据勾股定理逆定理得出AB⊥BD,再根据ED⊥平面ABCD得出ED⊥AB,故而AB⊥平面ADEF,从而平面ABE⊥平面EBD;(II)建立空间坐标系,设 =λ ,求出两平面的法向量,令法向量的夹角余弦值的绝对值等于 ,解出λ即可得出结论.
【考点精析】认真审题,首先需要了解平面与平面垂直的判定(一个平面过另一个平面的垂线,则这两个平面垂直).
【题目】某市食品药品监督管理局开展2019年春季校园餐饮安全检查,对本市的8所中学食堂进行了原料采购加工标准和卫生标准的检查和评分,其评分情况如下表所示:
中学编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
原料采购加工标准评分x | 100 | 95 | 93 | 83 | 82 | 75 | 70 | 66 |
卫生标准评分y | 87 | 84 | 83 | 82 | 81 | 79 | 77 | 75 |
(1)已知x与y之间具有线性相关关系,求y关于x的线性回归方程;(精确到0.1)
(2)现从8个被检查的中学食堂中任意抽取两个组成一组,若两个中学食堂的原料采购加工标准和卫生标准的评分均超过80分,则组成“对比标兵食堂”,求该组被评为“对比标兵食堂”的概率.
参考公式:,;
参考数据:,.
【题目】某研究型学习小组调查研究高中生使用智能手机对学习的影响,部分统计数据如下:
使用智能手机 | 不使用智能手机 | 合计 | |
学习成绩优秀 | |||
学习成绩不优秀 | |||
合计 |
(1)根据以上统计数据,你是否有 的把握认为使用智能手机对学习有影响?
(2)为了进一步了解学生对智能手机的使用习惯,现在对以上使用智能手机的高中时采用分层抽样的方式,抽取一个容量为 的样本,若抽到的学生中成绩不优秀的比成绩优秀的多 人,求 的值.
|
|
|
|
|
|
|
|
|
|
|
|