题目内容
【题目】如图,在四棱锥中,底面是矩形,面底面,且是边长为的等边三角形, , 在上,且∥面BDM.
(1)求直线PC与平面BDM所成角的正弦值;
(2)求平面BDM与平面PAD所成锐二面角的大小.
【答案】(1);(2).
【解析】试题分析:
利用题意建立空间直角坐标系,据此可得:
(1) 直线PC与平面BDM所成角的正弦值为
(2) 平面BDM与平面PAD所成锐二面角的大小为.
试题解析:
解:因为, 作AD边上的高PO,
则由,由面面垂直的性质定理,得,
又是矩形,同理,知, ,故.
以AD中点O为坐标原点,OA所在直线为x轴,OP所在直线为z轴,AD的垂直平分线y轴,建立如图所示的坐标系,则,
连结AC交BD于点N,由,
所以,又N是AC的中点,
所以M是PC的中点,则,设面BDM的法向量为,
,
,得,
令,解得,所以取.
(1)设PC与面BDM所成的角为,则,
所以直线PC与平面BDM所成角的正弦值为 .
(2)面PAD的法向量为向量,设面BDM与面PAD所成的锐二面角为,
则,故平面BDM与平面PAD所成锐二面角的大小为.
【题目】某公司为评估两套促销活动方案(方案1运作费用为5元/件;方案2的运作费用为2元/件),在某地区部分营销网点进行试点(每个试点网点只采用一种促销活动方案),运作一年后,对比该地区上一年度的销售情况,制作相应的等高条形图如图所示.
(1)请根据等高条形图提供的信息,为该公司今年选择一套较为有利的促销活动方案(不必说明理由);
(2)已知该公司产品的成本为10元/件(未包括促销活动运作费用),为制定本年度该地区的产品销售价格,统计上一年度的8组售价(单位:元/件,整数)和销量(单位:件)()如下表所示:
售价 | 33 | 35 | 37 | 39 | 41 | 43 | 45 | 47 |
销量 | 840 | 800 | 740 | 695 | 640 | 580 | 525 | 460 |
①请根据下列数据计算相应的相关指数,并根据计算结果,选择合适的回归模型进行拟合;
②根据所选回归模型,分析售价定为多少时?利润可以达到最大.
49428.74 | 11512.43 | 175.26 | |
124650 |
(附:相关指数)