题目内容

3.已知f(x)=x2+ax+b,用反证法证明:|f(1)|,|f(2)|,|f(3)|不都小于$\frac{1}{2}$.

分析 先根据函数f(x)的解析式,分别将x=1,2,3代入求得f(1),f(3),f(2),进而求得f(1)+f(3)-2f(2).再假设|f(1)|,|f(2)|,|f(3)|都小于$\frac{1}{2}$,推出-2<f(1)+f(3)-2f(2)<2,利用此式与上面求得的式子矛盾,从而得出证明.

解答 证明:∵f(x)=x2+ax+b
∴f(1)=1+a+b,f(2)=4+2a+b,f(3)=9+3a+b,
∴f(1)+f(3)-2f(2)=(1+a+b)+(9+3a+b)-2(4+2a+b)=2.
假设|f(1)|,|f(2)|,|f(3)|都小于$\frac{1}{2}$,
则|f(1)|<$\frac{1}{2}$,|f(2)|<$\frac{1}{2}$,|f(3)|<$\frac{1}{2}$,
即有-$\frac{1}{2}<$f(1)<$\frac{1}{2}$,-$\frac{1}{2}<$f(2)<$\frac{1}{2}$,-$\frac{1}{2}<$f(3)<$\frac{1}{2}$,
∴-2<f(1)+f(3)-2f(2)<2
与f(1)+f(3)-2f(2)=2矛盾,
∴假设不成立,即原命题成立

点评 反证法是一种从反面的角度思考问题的证明方法,体现的原则是正难则反.反证法的基本思想:否定结论就会导致矛盾,证题模式可以简要的概括为“否定→推理→否定”.实施的具体步骤是:
第一步,反设:作出与求证结论相反的假设;
第二步,归谬:将反设作为条件,并由此通过一系列的正确推理导出矛盾;
第三步,结论:说明反设不成立,从而肯定原命题成立.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网