题目内容
3.已知f(x)=x2+ax+b,用反证法证明:|f(1)|,|f(2)|,|f(3)|不都小于$\frac{1}{2}$.分析 先根据函数f(x)的解析式,分别将x=1,2,3代入求得f(1),f(3),f(2),进而求得f(1)+f(3)-2f(2).再假设|f(1)|,|f(2)|,|f(3)|都小于$\frac{1}{2}$,推出-2<f(1)+f(3)-2f(2)<2,利用此式与上面求得的式子矛盾,从而得出证明.
解答 证明:∵f(x)=x2+ax+b
∴f(1)=1+a+b,f(2)=4+2a+b,f(3)=9+3a+b,
∴f(1)+f(3)-2f(2)=(1+a+b)+(9+3a+b)-2(4+2a+b)=2.
假设|f(1)|,|f(2)|,|f(3)|都小于$\frac{1}{2}$,
则|f(1)|<$\frac{1}{2}$,|f(2)|<$\frac{1}{2}$,|f(3)|<$\frac{1}{2}$,
即有-$\frac{1}{2}<$f(1)<$\frac{1}{2}$,-$\frac{1}{2}<$f(2)<$\frac{1}{2}$,-$\frac{1}{2}<$f(3)<$\frac{1}{2}$,
∴-2<f(1)+f(3)-2f(2)<2
与f(1)+f(3)-2f(2)=2矛盾,
∴假设不成立,即原命题成立
点评 反证法是一种从反面的角度思考问题的证明方法,体现的原则是正难则反.反证法的基本思想:否定结论就会导致矛盾,证题模式可以简要的概括为“否定→推理→否定”.实施的具体步骤是:
第一步,反设:作出与求证结论相反的假设;
第二步,归谬:将反设作为条件,并由此通过一系列的正确推理导出矛盾;
第三步,结论:说明反设不成立,从而肯定原命题成立.
练习册系列答案
相关题目
20.为了普及环保知识,增强环保意识,某校从理科甲班抽取60人,从文科乙班抽取50人参加环保知识测试.
(Ⅰ)根据题目条件完成下面2×2列联表,并据此判断是否有99%的把握认为环保知识成绩优秀与学生的文理分类有关.
(Ⅱ)现已知A,B,C三人获得优秀的概率分别为$\frac{1}{2},\frac{1}{3},\frac{1}{3}$,设随机变量X表示A,B,C三人中获得优秀的人数,求X的分布列及期望E(X).
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d
(Ⅰ)根据题目条件完成下面2×2列联表,并据此判断是否有99%的把握认为环保知识成绩优秀与学生的文理分类有关.
优秀人数 | 非优秀人数 | 总计 | |
甲班 | |||
乙班 | 30 | ||
总计 | 60 |
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d
P(K2>k0) | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
14.在一次数学测试中,甲、乙两个小组各12人的成绩如下表:(单位:分)
若成绩在90分以上(包括90分)的等级记为“优秀”,其余的等级都记为“合格”.
(Ⅰ)在以上24人中,如果按等级用分层抽样的方法从中抽取6人,再从这6人中随机选出2人,求选出的2人中至少有一人等级为“优秀”的概率;
(Ⅱ)若从所有等级为“优秀”的人当中选出3人,用X表示其中乙组的人数,求随机变量X的分布列和的数学期望.
甲组 | 91 | 86 | 82 | 75 | 93 | 90 | 68 | 82 | 76 | 94 | 92 | 64 |
乙组 | 77 | 84 | 95 | 81 | 98 | 69 | 72 | 88 | 93 | 65 | 70 | 85 |
(Ⅰ)在以上24人中,如果按等级用分层抽样的方法从中抽取6人,再从这6人中随机选出2人,求选出的2人中至少有一人等级为“优秀”的概率;
(Ⅱ)若从所有等级为“优秀”的人当中选出3人,用X表示其中乙组的人数,求随机变量X的分布列和的数学期望.
11.已知在四面体S-ABC中,SA⊥平面ABC,SA=AB=AC=BC=2,则该四面体外接球的表面积是( )
A. | 7π | B. | 8π | C. | $\frac{28π}{3}$ | D. | $\frac{32π}{3}$ |
8.若直线y=kx+1与圆x2+y2=1相交于P、Q两点,且∠POQ=90°(其中O为原点),则k的值为( )
A. | $\sqrt{2}$ | B. | 1 | C. | $-\sqrt{2}$或$\sqrt{2}$ | D. | -1或1 |