题目内容
【题目】从某学校高三年级共800名男生中随机抽取50名测量身高,据测量被测学生身高全部介于155cm和195cm之间,将测量结果按如下方式分成八组:第一组[155,160)、第二组[160,165);…第八组[190,195],如图是按上述分组方法得到的频率分布直方图的一部分,已知第六组比第七组多1人,第一组和第八组人数相同.
(I)求第六组、第七组的频率并补充完整频率分布直方图;
(Ⅱ)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为x、y,求满足|x﹣y|≤5的事件概率.
【答案】解:(I):由直方图知,前五组频率为(0.008+0.016+0.04+0.04+0.06)×5=0.82, 后三组频率为1﹣0.82=0.18,人数为0.18×50=9(人),
由直方图得第八组频率为:0.008×5=0.04,人数为0.04×50=2(人),
设第六组人数为m,则第七组人数为m﹣1,又m+m﹣1+2=9,所以m=4,
即第六组人数为4人,第七组人数为3人,频率分别为0.08,0.06,
频率除以组距分别等于0.016,0.012,见图,
(Ⅱ)由(1)知身高在[180,185]内的人数为4人,设为a,b,c,d.身高在[190,195]的人数为2人,设为A,B.
若x,y∈[180,185]时,有ab,ac,ad,bc,bd,cd共六种情况.
若x,y∈[190,195]时,有AB共一种情况.
若x,y分别在[180,185],[190,195]内时,有aA,bA,cA,dA,aB,bB,cB,dB共8种情况
所以基本事件的总数为6+8+1=15种,
事件|x﹣y|≤5所包含的基本事件个数有6+1=7种,故满足|x﹣y|≤5的事件概率p= .
【解析】(I)由直方图求出前五组的频率,进一步得到后三组的频率,然后求出后三组的人数和,再由第八组的频率求出第八组的人数,设出第六组的人数m,求出m的值,则第六组、第七组的频率可求;(Ⅱ)分别求出身高在[180,185)内和在[190,195)的人数,标号后利用列举法写出从中随机抽取两名男生的所有情况,查出满足|x﹣y|≤5的事件个数,然后利用古典概型概率计算公式求解
【考点精析】本题主要考查了频率分布直方图的相关知识点,需要掌握频率分布表和频率分布直方图,是对相同数据的两种不同表达方式.用紧凑的表格改变数据的排列方式和构成形式,可展示数据的分布情况.通过作图既可以从数据中提取信息,又可以利用图形传递信息才能正确解答此题.
![](http://thumb.zyjl.cn/images/loading.gif)
【题目】拖延症总是表现在各种小事上,但日积月累,特别影响个人发展.某校的一个社会实践调查小组,在对该校学生进行“是否有明显拖延症”的调查中,随机发放了110份问卷.对收回的100份有效问卷进行统计,得到如下列联表:
有明显拖延症 | 无明显拖延症 | 合计 | |
男 | 35 | 25 | 60 |
女 | 30 | 10 | 40 |
合计 | 65 | 35 | 100 |
(Ⅰ)按女生是否有明显拖延症进行分层,已经从40份女生问卷中抽取了8份问卷,现从这8份问卷中再随机抽取3份,并记其中无明显拖延症的问卷的份数为,试求随机变量
的分布列和数学期望;
(Ⅱ)若在犯错误的概率不超过的前提下认为无明显拖延症与性别有关,那么根据临界值表,最精确的
的值应为多少?请说明理由.
附:独立性检验统计量,其中
.
独立性检验临界值表:
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
1.323 | 2.072 | 2.706 | 3.841 | 5.024 |