题目内容

【题目】已知函数f(x)=loga(1﹣x)+loga(x+3)(0<a<1)
(1)求函数f(x)的定义域;
(2)求函数f(x)的零点;
(3)若函数f(x)的最小值为﹣4,求a的值.

【答案】
(1)解:要使函数有意义:则有 ,解之得:﹣3<x<1,

则函数的定义域为:(﹣3,1)


(2)解:函数可化为f(x)=loga(1﹣x)(x+3)=loga(﹣x2﹣2x+3)

由f(x)=0,得﹣x2﹣2x+3=1,

即x2+2x﹣2=0,

,∴函数f(x)的零点是


(3)解:函数可化为:

f(x)=loga(1﹣x)(x+3)=loga(﹣x2﹣2x+3)=loga[﹣(x+1)2+4]

∵﹣3<x<1,∴0<﹣(x+1)2+4≤4,

∵0<a<1,∴loga[﹣(x+1)2+4]≥loga4,

即f(x)min=loga4,由loga4=﹣4,得a4=4,


【解析】(1)根据对数的真数大于零,列出不等式组并求出解集,函数的定义域用集合或区间表示出来;(2)利用对数的运算性质对解析式进行化简,再由f(x)=0,即﹣x2﹣2x+3=1,求此方程的根并验证是否在函数的定义域内;(3)把函数解析式化简后,利用配方求真数在定义域内的范围,再根据对数函数在定义域内递减,求出函数的最小值loga4,得loga4=﹣4利用对数的定义求出a的值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网