题目内容

如图,边长为2的正方形ABCD中,点E、F分别是边AB、BC上的点,将△AED、△DCF分别沿DE、DF折起,使A、C两点重合于点A′.
(1)△A′EF恰好是正三角形且Q是A′F的中点,求证:EQ⊥平面A′FD
(2)当E、F分别是AB、BC的中点时,求二面角A′-EF-D的正弦值.
(1)∵DA′⊥A′E,DA′⊥A′F,A′E∩A′F=A′,
∴DA′⊥面A′EF,
∴DA′⊥EQ,
又△A′EF为正三角形,Q′为A′F的中点,
∴EQ⊥A′F,A′F∩DA′,
∴EQ⊥面DA′F;
(2)∵E、F为AB、BC的中点,
∴A′E=A′F=1,ED=FD=
AD2+AE2
=
5
,EF=
BE2+BF2
=
2

取EF中点O,连接A′O,OD,则A′O⊥EF,DO⊥EF,
∴∠A′OD为二面角A′-EF-D平面角,
OD=
ED2-OE2
=
5-(
2
2
)2
=
3
2
2
,A′O=
A′E2-EO2
=
1-(
2
2
)2
=
2
2

在△A′OD中,cos∠A′OD=
A′O2+OD2-A′D2
2A′O•OD
=
1
2
+
9
2
-4
2
2
×
3
2
2
=
1
3

∴∠A′OD=arccos
1
3

故二面角A′-EF-D大小为arccos
1
3
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网