题目内容
设数列{bn}满足bn+2=-bn+1-bn(n∈N*),b2=2b1.
(1)若b3=3,求b1的值;
(2)求证数列{bnbn+1bn+2+n}是等差数列;
(3)设数列{Tn}满足:Tn+1=Tnbn+1(n∈N*),且T1=b1=-,若存在实数p,q,对任意n∈N*都有p≤T1+T2+T3+…+Tn<q成立,试求q-p的最小值.
(1)b1=-1(2)见解析(3)
【解析】(1)∵bn+2=-bn+1-bn,
∴b3=-b2-b1=-3b1=3,
∴b1=-1;(3分)
(2)∵bn+2=-bn+1-bn①,
∴bn+3=-bn+2-bn+1②,
②-①得bn+3=bn,(5分)
∴(bn+1bn+2bn+3+n+1)-(bnbn+1bn+2+n)=bn+1bn+2(bn+3-bn)+1=1为常数,
∴数列{bnbn+1bn+2+n}是等差数列.(7分)
(3)∵Tn+1=Tn·bn+1=Tn-1bnbn+1=Tn-2bn-1bnbn+1=…=b1b2b3…bn+1
当n≥2时Tn=b1b2b2…bn(*),
当n=1时,T1=b1适合(*)式
∴Tn=b1b2b3…bn(n∈N*).(9分)
∵b1=-,b2=2b1=-1,
b3=-3b1=,bn+3=bn,
∴T1=b1=-,T2=T1b2=,
T3=T2b3=,T4=T3b4=T3b1=T1,
T5=T4b5=T2b3b4b5=T2b1b2b3=T2,
T6=T5b6=T3b4b5b6=T3b1b2b3=T3,
……
T3n+1+T3n+2+T3n+3=T3n-2b3n-1b3nb3n+1+
T3n-1b3nb3n+1b3n+2+T3nb3n+1b3n+2b3n+3
=T3n-2b1b2b3+T3n-1b1b2b3+T3nb1b2b3
= (T3n-2+T3n-1+T3n),
∴数列{T3n-2+T3n-1+T3n)(n∈N*)是等比数列,
首项T1+T2+T3=且公比q=,(11分)记Sn=T1+T2+T3+…+Tn,
①当n=3k(k∈N*)时,
Sn=(T1+T2+T3)+(T4+T5+T6)…+(T3k-2+T3k-1+T3k)
=,
∴≤Sn<3;(13分)
②当n=3k-1(k∈N*)时
Sn=(T1+T2+T3)+(T4+T5+T6)+…+(T3k-2+T3k-1+T3k)-T3k
=3-(b1b2b3)k=3-4·∴0≤Sn<3;(14分)
③当n=3k-2(k∈N*)时
Sn=(T1+T2+T3)+(T4+T5+T6)+…+(T3k-2+T3k-1+T3k)-T3k-1-T3k
=3-(b1b2b3)k-1b1b2-