题目内容

设数列{bn}满足bn2=-bn1bn(nN*)b22b1.

(1)b33,求b1的值;

(2)求证数列{bnbn1bn2n}是等差数列;

(3)设数列{Tn}满足:Tn1Tnbn1(nN*),且T1b1=-,若存在实数pq,对任意nN*都有pT1T2T3Tnq成立,试求qp的最小值.

 

1b1=-12)见解析(3

【解析】(1)bn2=-bn1bn

b3=-b2b1=-3b13

b1=-1(3)

(2)bn2=-bn1bn

bn3=-bn2bn1

bn3bn(5)

(bn1bn2bn3n1)(bnbn1bn2n)bn1bn2(bn3bn)11为常数,

数列{bnbn1bn2n}是等差数列.(7)

(3)Tn1Tn·bn1Tn1bnbn1Tn2bn1bnbn1b1b2b3bn1

n≥2Tnb1b2b2bn(*)

n1时,T1b1适合(*)

Tnb1b2b3bn(nN*)(9)

b1=-b22b1=-1

b3=-3b1bn3bn

T1b1=-T2T1b2

T3T2b3T4T3b4T3b1T1

T5T4b5T2b3b4b5T2b1b2b3T2

T6T5b6T3b4b5b6T3b1b2b3T3

……

T3n1T3n2T3n3T3n2b3n1b3nb3n1

T3n1b3nb3n1b3n2T3nb3n1b3n2b3n3

T3n2b1b2b3T3n1b1b2b3T3nb1b2b3

(T3n2T3n1T3n)

数列{T3n2T3n1T3n)(nN*)是等比数列

首项T1T2T3且公比q(11)SnT1T2T3Tn

n3k(kN*)

Sn(T1T2T3)(T4T5T6)…(T3k2T3k1T3k)

Sn3(13)

n3k1(kN*)

Sn(T1T2T3)(T4T5T6)(T3k2T3k1T3k)T3k

3(b1b2b3)k30≤Sn3(14)

n3k2(kN*)

Sn(T1T2T3)(T4T5T6)(T3k2T3k1T3k)T3k1T3k

3(b1b2b3)k1b1b2

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网