题目内容

【题目】某校100名学生期中考试数学成绩的频率分布直方图如图,其中成绩分组区间如下:

组号

第一组

第二组

第三组

第四组

第五组

分组

[50,60)

[60,70)

[70,80)

[80,90)

[90,100]

(Ⅰ)求图中a的值;
(Ⅱ)根据频率分布直方图,估计这100名学生期中考试数学成绩的平均分;
(Ⅲ)现用分层抽样的方法从第3、4、5组中随机抽取6名学生,将该样本看成一个总体,从中随机抽取2名,求其中恰有1人的分数不低于90分的概率?

【答案】解:(Ⅰ)由题意得10a+0.01×10+0.02×10+0.03×10+0.035×10=1,所以a=0.005. (Ⅱ)由直方图分数在[50,60]的频率为0.05,[60,70]的频率为0.35,[70,80]的频率为0.30,
[80,90]的频率为0.20,[90,100]的频率为0.10,所以这100名学生期中考试数学成绩的平均分的估计值为:55×0.05+65×0.35+75×0.30+85×0.20+95×0.10=74.5
(Ⅲ)由直方图,得:
第3组人数为0.3×100=30,
第4组人数为0.2×100=20人,
第5组人数为0.1×100=10人.
所以利用分层抽样在60名学生中抽取6名学生,
每组分别为:
第3组: 人,
第4组: 人,
第5组: =1人.
所以第3、4、5组分别抽取3人、2人、1人.
设第3组的3位同学为A1 , A2 , A3 , 第4组的2位同学为B1 , B2 , 第5组的1位同学为C1 , 则从六位同学中抽两位同学有15种可能如下:
(A1 , A2),(A1 , A3),(B1 , B2),(A2 , A3),(A1 , B1),(A1 , B2),(A2 , B1),(A2 , B2),(A3 , B1),(A3 , B2),(A1 , C1),(A2 , C1),(A3 , C1),(B1 , C1),(B2 , C1),
其中恰有1人的分数不低于90(分)的情形有:(A1 , C1),(A2 , C1),(A3 , C1),(B1 , C1),(B2 , C1),共5种.
所以其中第4组的2位同学至少有一位同学入选的概率为

【解析】(1)根据所以概率的和为1,即所求矩形的面积和为1,建立等式关系,可求出所求;(2)均值为各组组中值与该组频率之积的和;(3)先分别求出3,4,5组的人数,再利用古典概型知识求解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网