题目内容

【题目】求满足下列条件的直线的方程:
(1)经过两条直线2x﹣3y+10=0和3x+4y﹣2=0的交点,且垂直于直线3x﹣2y+4=0;
(2)经过两条直线2x+y﹣8=0和x﹣2y+1=0的交点,且平行于直线4x﹣3y﹣7=0.

【答案】解:(1)联立,解得
∴两条直线2x﹣3y+10=0和3x+4y﹣2=0的交点为(﹣2,2),
又直线3x﹣2y+4=0的斜率为
∴经过两条直线2x﹣3y+10=0和3x+4y﹣2=0的交点,且垂直于直线3x﹣2y+4=0的直线方程为:
y﹣2=-(x+2),即2x+3y﹣2=0;
(2)联立,解得
∴两条直线2x+y﹣8=0和x﹣2y+1=0的交点坐标为(3,2),
又直线4x﹣3y﹣7=0的斜率为
∴经过两条直线2x+y﹣8=0和x﹣2y+1=0的交点,且平行于直线4x﹣3y﹣7=0的直线方程为:
y﹣2=(x﹣3),即4x﹣3y﹣6=0.
【解析】(1)联立两直线方程求得两直线交点,由直线与直线3x﹣2y+4=0垂直求得斜率,代入直线方程的点斜式得答案;
(2)联立两直线方程求得两直线交点,由直线与直线4x﹣3y﹣7=0平行求得斜率,代入直线方程的点斜式得答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网