题目内容
【题目】已知半径为5的圆的圆心在x轴上,圆心的横坐标是整数,且与直线4x+3y﹣29=0相切.
(1)求圆的方程;
(2)设直线ax﹣y+5=0(a>0)与圆相交于A,B两点,求实数a的取值范围;
(3)在(2)的条件下,是否存在实数a,使得弦AB的垂直平分线l过点P(﹣2,4),若存在,求出实数a的值;若不存在,请说明理由.
【答案】(1)(x﹣1)2+y2=25.(2)().(3)存在,
【解析】
(1)设圆心为M(m,0),根据相切得到,计算得到答案.
(2)把直线ax﹣y+5=0,代入圆的方程,计算△=4(5a﹣1)2﹣4(a2+1)>0得到答案.
(3)l的方程为,即x+ay+2﹣4a=0,过点M(1,0),计算得到答案.
(1)设圆心为M(m,0)(m∈Z).由于圆与直线4x+3y﹣29=0相切,且半径为5,
所以 ,即|4m﹣29|=25.因为m为整数,故m=1.
故所求圆的方程为(x﹣1)2+y2=25.
(2)把直线ax﹣y+5=0,即y=ax+5,代入圆的方程,消去y,
整理得(a2+1)x2+2(5a﹣1)x+1=0,
由于直线ax﹣y+5=0交圆于A,B两点,故△=4(5a﹣1)2﹣4(a2+1)>0,
即12a2﹣5a>0,由于a>0,解得a,所以实数a的取值范围是().
(3)设符合条件的实数a存在,则直线l的斜率为,
l的方程为,即x+ay+2﹣4a=0,
由于l垂直平分弦AB,故圆心M(1,0)必在l上,
所以1+0+2﹣4a=0,解得.由于,故存在实数
使得过点P(﹣2,4)的直线l垂直平分弦AB.
练习册系列答案
相关题目