题目内容
【题目】如图,四棱锥P-ABCD的底面是矩形,PA⊥平面ABCD,E,F分别是AB,PD的中点,且PA=AD.
(Ⅰ)求证:AF∥平面PEC;
(Ⅱ)求证:平面PEC⊥平面PCD.
【答案】(Ⅰ)见解析(Ⅱ)见解析
【解析】
(Ⅰ)取PC的中点G,连结FG、EG,AF∥EG又EG平面PCE,AF平面PCE,AF∥平面PCE; (Ⅱ)由(Ⅰ)得EG∥AF,只需证明AF⊥面PDC,即可得到平面PEC⊥平面PCD.
证明:(Ⅰ)取PC的中点G,连结FG、EG,
∴FG为△CDP的中位线,FG∥CD,FG=CD.
∵四边形ABCD为矩形,E为AB的中点,∴AE∥CD,AE=CD.
∴FG=AE,FG∥AE,∴四边形AEGF是平行四边形,
∴AF∥EG又EG平面PCE,AF平面PCE,
∴AF∥平面PCE;
(Ⅱ)∵PA=AD.∴AF⊥PD
PA⊥平面ABCD,∴PA⊥CD,
又因为CD⊥AB,AP∩AB=A,∴CD⊥面APD
∴CD⊥AF,且PD∩CD=D,∴AF⊥面PDC
由(Ⅰ)得EG∥AF,∴EG⊥面PDC
又EG平面PCE,∴平面PEC⊥平面PCD.
【题目】李克强总理在2018年政府工作报告指出,要加快建设创新型国家,把握世界新一轮科技革命和产业变革大势,深入实施创新驱动发展战略,不断增强经济创新力和竞争力.某手机生产企业积极响应政府号召,大力研发新产品,争创世界名牌.为了对研发的一批最新款手机进行合理定价,将该款手机按事先拟定的价格进行试销,得到一组销售数据,如表所示:
单价(千元) | ||||||
销量(百件) |
已知.
(1)若变量具有线性相关关系,求产品销量(百件)关于试销单价(千元)的线性回归方程;
(2)用(1)中所求的线性回归方程得到与对应的产品销量的估计值.当销售数据对应的残差的绝对值时,则将销售数据称为一个“好数据”.现从个销售数据中任取个子,求“好数据”个数的分布列和数学期望.
(参考公式:线性回归方程中的估计值分别为.