题目内容

如图,已知正方形ABCD的边长为1,FD⊥平面ABCD,EB⊥平面ABCD,FD=BE=1,M为BC边上的动点.试探究点M的位置,使F—AE—M为直二面角.
M为BC的中点

试题分析:以D为坐标原点,分别以DA、DC、DF所在直线为x、y、z轴,建立空间直角坐标D-xyz,
依题意,得D(0,0,0),A(1,0,0),F(0,0,1),C(0,1,0),B(1,1,0),E(1,1,1),
设M(λ,1,0),平面AEF的法向量为=(x1,y1,z1),平面AME的法向量为
=(x2,y2,z2)
=(0,1,1),=(-1,0,1), ∴   ∴
取z1=1,得x1=1,y1=-1  ∴=(1,-1,0) 
=(λ-1,1,0) ,=(0,1,1),
 ∴
取x2=1得y2=1-λ,z2=λ-1       ∴=(1,1-λ,λ-1)
若平面AME⊥平面AEF,则 ∴=0,
∴1-(1-λ)+(λ-1)=0,解得λ=
此时M为BC的中点.
所以当M在BC的中点时,平面AME⊥平面AEF.        ……………12分
点评:空间向量解立体几何题目首要的是找到坐标系合适的位置,写出相关点的坐标
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网