题目内容
【题目】已知椭圆:的焦距与短轴长相等,椭圆上一点到两焦点距离之差的最大值为4.
(1)求椭圆的标准方程;
(2)若点为椭圆上异于左右顶点,的任意一点,过原点作的垂线交的延长线于点,求的轨迹方程.
【答案】(1);(2).
【解析】
(1)由题得b=c, 点到两焦点距离之差,利用焦半径的范围得最大值,确定c值,即可得到椭圆方程;(2)设,的斜率分别为,,由已知得,设直线,BM的方程,整理可得点M的轨迹方程.
(1)由椭圆:的焦距与短轴长相等得,
设为椭圆上任一点,左右焦点分别为,,
,∵.
∴最大值为,即,椭圆方程为;
(2)设,的斜率分别为,,设点坐标为,,,
,
由,直线的方程为①
直线的方程为②
①②两式相除可得,
观察可知,点不可能与点重合,则的轨迹方程为.
【题目】中国神舟十一号载人飞船在酒泉卫星发射中心成功发射,引起全国轰动.开学后,某校高二年级班主任对该班进行了一次调查,发现全班60名同学中,对此事关注的占,他们在本学期期末考试中的物理成绩(满分100分)如下面的频率分布直方图:
(1)求“对此事关注”的同学的物理期末平均分(以各区间的中点代表该区间的均值).
(2)若物理成绩不低于80分的为优秀,请以是否优秀为分类变量,
①补充下面的列联表:
物理成绩优秀 | 物理成绩不优秀 | 合计 | |
对此事关注 | |||
对此事不关注 | |||
合计 |
②是否有以上的把握认为“对此事是否关注”与物理期末成绩是否优秀有关系?
参考公式: ,其中.
参考数据:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【题目】有一片产量很大的水果种植园,在临近成熟时随机摘下某品种水果100个,其质量(均在l至11kg)频数分布表如下(单位: kg):
分组 |
|
|
|
|
|
频数 | 10 | 15 | 45 | 20 | 10 |
以各组数据的中间值代表这组数据的平均值,将频率视为概率.
(1)由种植经验认为,种植园内的水果质量近似服从正态分布,其中近似为样本平均数近似为样本方差.请估算该种植园内水果质量在内的百分比;
(2)现在从质量为 的三组水果中用分层抽样方法抽取14个水果,再从这14个水果中随机抽取3个.若水果质量的水果每销售一个所获得的的利润分别为2元,4元,6元,记随机抽取的3个水果总利润为元,求的分布列及数学期望.
附: ,则.