题目内容
如图,已知四棱柱ABCD-A1B1C1D1的底面ABCD是矩形,AB=4,AA1=3,∠BAA1=60°,E为棱C1D1的中点,则
•
=______.
AB |
AE |
由题意可得
=
+
+
=
+
+
,
∴
•
=
•(
+
+
)
=
•
+
•
+
2
=0+4×3×cos60°+
×42
=14
故答案为:14
AE |
AD |
DD1 |
D1E |
=
AD |
AA1 |
1 |
2 |
AB |
∴
AB |
AE |
AB |
AD |
AA1 |
1 |
2 |
AB |
=
AB |
AD |
AB |
AA1 |
1 |
2 |
AB |
=0+4×3×cos60°+
1 |
2 |
=14
故答案为:14
练习册系列答案
相关题目