题目内容
(本小题满分14分)
已知函数的减区间是
.
⑴试求m、n的值;
⑵求过点且与曲线
相切的切线方程;
⑶过点A(1,t)是否存在与曲线相切的3条切线,若存在求实数t的取值范围;若不存在,请说明理由.
解:⑴ 由题意知:的解集为
,
所以,-2和2为方程的根, ………………2分
由韦达定理知 ,即m=1,n=0. ………………4分
⑵ ∵,∴
,∵
当A为切点时,切线的斜率 ,
∴切线为,即
; ………………6分
当A不为切点时,设切点为,这时切线的斜率是
,
切线方程为,即
因为过点A(1,-11), ,∴
,
∴ 或
,而
为A点,即另一个切点为
,
∴ ,
切线方程为 ,即
………………8分
所以,过点的切线为
或
. …………9分
⑶ 存在满足条件的三条切线. …………10分
设点是曲线
的切点,
则在P点处的切线的方程为 即
因为其过点A(1,t),所以,,
由于有三条切线,所以方程应有3个实根, …………………………11分
设,只要使曲线有3个零点即可.
设 =0, ∴
分别为
的极值点,
当时
,
在
和
上单增,
当时
,
在
上单减,
所以,为极大值点,
为极小值点.
所以要使曲线与x轴有3个交点,当且仅当即
,
解得 . …………14分
www..com
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目