题目内容
3.已知椭圆T:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{3}{5}$,过右焦点F2且与x轴垂直的直线被椭圆T截得的线段长为$\frac{32}{5}$(1)求椭圆T的方程;
(2)设A为椭圆T的左顶点,过F2的动直线l交椭圆于B,C两点(与A不重合),直线AB,AC的斜率分别为k1,k2.求证:k1•k2为定值.
分析 (1)过右焦点F2且与x轴垂直的直线被椭圆T截得的线段长为$\frac{32}{5}$,可得$\frac{2{b}^{2}}{a}$=$\frac{32}{5}$,即$\frac{{b}^{2}}{a}=\frac{16}{5}$.联立$\left\{\begin{array}{l}{\frac{{b}^{2}}{a}=\frac{16}{5}}\\{\frac{c}{a}=\frac{3}{5}}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$,解出即可.
(2)A(-5,0).设BC的方程为my=x-3,B(x1,y1),C(x2,y2).与椭圆方程联立可得:(16m2+25)y2+96my-256=0.利用斜率计算公式可得:k1=$\frac{{y}_{1}}{{x}_{1}+5}$,k2=$\frac{{y}_{2}}{{x}_{2}+5}$.于是k1•k2=$\frac{{y}_{1}{y}_{2}}{{m}^{2}{y}_{1}{y}_{2}+8m({y}_{1}+{y}_{2})+64}$,把根与系数的关系代入即可得出.
解答 (1)解:∵过右焦点F2且与x轴垂直的直线被椭圆T截得的线段长为$\frac{32}{5}$,∴$\frac{2{b}^{2}}{a}$=$\frac{32}{5}$,即$\frac{{b}^{2}}{a}=\frac{16}{5}$.
联立$\left\{\begin{array}{l}{\frac{{b}^{2}}{a}=\frac{16}{5}}\\{\frac{c}{a}=\frac{3}{5}}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$,解得a=5,b=4,c=3.
∴椭圆T的方程为$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{16}=1$.
(2)证明:A(-5,0).
设BC的方程为my=x-3,B(x1,y1),C(x2,y2).
联立$\left\{\begin{array}{l}{my=x-3}\\{\frac{{x}^{2}}{25}+\frac{{y}^{2}}{16}=1}\end{array}\right.$,化为(16m2+25)y2+96my-256=0.
∴y1+y2=-$\frac{96m}{16{m}^{2}+25}$,y1y2=$\frac{-256}{16{m}^{2}+25}$.
∵k1=$\frac{{y}_{1}}{{x}_{1}+5}$,k2=$\frac{{y}_{2}}{{x}_{2}+5}$.
∴k1•k2=$\frac{{y}_{1}}{{x}_{1}+5}$•$\frac{{y}_{2}}{{x}_{2}+5}$=$\frac{{y}_{1}{y}_{2}}{(m{y}_{1}+8)(m{y}_{2}+8)}$=$\frac{{y}_{1}{y}_{2}}{{m}^{2}{y}_{1}{y}_{2}+8m({y}_{1}+{y}_{2})+64}$=$\frac{\frac{-256}{16{m}^{2}+25}}{\frac{-256{m}^{2}}{16{m}^{2}+25}-\frac{768{m}^{2}}{16{m}^{2}+25}+64}$=$-\frac{4}{25}$为定值.
点评 本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题转化为方程联立可得根与系数的关系、斜率计算公式,考查了推理能力与计算能力,属于难题.
A. | $\frac{\sqrt{7}}{3}$ | B. | -$\frac{\sqrt{7}}{3}$ | C. | ±$\frac{\sqrt{7}}{3}$ | D. | -$\frac{3\sqrt{7}}{7}$ |
A. | λ=-$\frac{1}{2}$ | B. | λ=-2或-$\frac{1}{2}$ | C. | λ≠-2 | D. | λ≠1且λ≠-2 |
A. | B. | C. | D. |