题目内容

【题目】设函数y=f(x)在(a,b)上可导,则f(x)在(a,b)上为增函数是f′(x)>0的(
A.必要不充分条件
B.充分不必要条件
C.充分必要条件
D.既不充分也不必要条件

【答案】A
【解析】解:若函数f(x)=x3 , 在(﹣1,1)上为增函数,但f′(x)=3≥0,则f′(x)>0不成立,即充分性不成立, 若f′(x)>0,则f(x)在(a,b)上为增函数,即必要性成立,
则f(x)在(a,b)上为增函数是f′(x)>0的必要不充分条件,
故选:A
根据充分条件和必要条件的定义结合函数单调性和导数之间的关系进行判断即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网