题目内容

3.在数列{an}中,若存在非零整数T,使得am+T=am对于任意的正整数m均成立,那么称数列{an}为周期数列,其中T叫做数列{an}的周期.若数列{xn}满足xn+1=|xn-xn-1|(n≥2,n∈N),如x1=1,x2=a(a∈R,a≠0),当数列{xn}的周期最小时,该数列的前2015项的和是(  )
A.671B.672C.1342D.1344

分析 ①若其最小周期为1,则该数列是常数列,即每一项都等于1,此时a=1,而该数列的项分别为1,1,0,1,1,0,1,1,0,…,即此时该数列是以3为周期的数列,矛盾,舍去.②若其最小周期为2,同理得出矛盾,舍去.综上所述,当数列{xn}的周期最小时,其最小周期是3,a=1,即可得出.

解答 解:①若其最小周期为1,则该数列是常数列,即每一项都等于1,此时a=1,
而该数列的项分别为1,1,0,1,1,0,1,1,0,…,即此时该数列是以3为周期的数列,矛盾,舍去.
②若其最小周期为2,则有a3=a1,即|a-1|=1,a-1=1或-1,a=2或a=0,又a≠0,故a=2,
此时该数列的项依次为1,2,1,1,0,…,由此可见,此时它并不是以2为周期的数列,舍去.
③综上所述,当数列{xn}的周期最小时,其最小周期是3,a=1,又2 015=3×671+2,
故此时该数列的前2 015项和是671×(1+1+0)+(1+1)=1344.
故选:D.

点评 本题考查了数列的周期性、分类讨论思想方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网