题目内容
【题目】如图所示,在矩形ABCD中,AD=2,AB=1,点E是AD的中点,将△DEC沿CE折起到△D′EC的位置,使二面角D′﹣EC﹣B是直二面角.
(1)证明:BE⊥CD′;
(2)求二面角D′﹣BC﹣E的余弦值.
【答案】
(1)证明:∵AD=2,AB=1,E是AD的中点,
∴△BAE,△CDE是等腰直角三角形,
∵AB=AE=DE=CD,∠BAE=∠CDE=90°,
∴∠BEC=90°,∴BE⊥EC.
又∵平面D'EC⊥平面BEC,面D'EC∩面BEC=EC,
∴BE⊥面D'EC,
又CD'面D'EC,∴BE⊥CD'
(2)解:法一:设M是线段EC的中点,过M作MF⊥BC垂足为F,
连接D'M,D'F,则D'M⊥EC,
∵平面D'EC⊥平面BEC,
∴D'M⊥平面BEC,∴D'M⊥BC,
∴BC⊥平面D′MF,∴D'F⊥BC,
∴∠D'FM是二面角D'﹣BC﹣E的平面角.
在Rt△D'MF中,D'M= , ,
∴ ,
∴二面角D'﹣BC﹣E的余弦值为 .
法二:分别以EB,EC所在的直线为x轴、y轴,过E垂直于平面BEC的射线为z轴,
建立如图空间直角坐标系.
则 , , ,
.
设平面BEC的法向量为 ,
平面D'BC的法向量为 ,
则 ,取x2=1,得 =(1,1,1),
cos< >= = ,
∴二面角D'﹣BC﹣E的余弦值为
【解析】(1)由已知得BE⊥EC.从而BE⊥面D'EC,由此能证明BE⊥CD'.(2)法一:设M是线段EC的中点,过M作MF⊥BC垂足为F,则∠D'FM是二面角D'﹣BC﹣E的平面角.由此能求出二面角D'﹣BC﹣E的余弦值.法二:分别以EB,EC所在的直线为x轴、y轴,过E垂直于平面BEC的射线为z轴,建立空间直角坐标系.利用向量法能求出二面角D'﹣BC﹣E的余弦值.
【考点精析】本题主要考查了空间中直线与直线之间的位置关系的相关知识点,需要掌握相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点才能正确解答此题.