题目内容
【题目】设函数,,,
(1)求在处的切线的一般式方程;
(2)请判断与的图像有几个交点?
(3)设为函数的极值点,为与的图像一个交点的横坐标,且,证明:.
【答案】(1)(2)与的图像有2交点(3)证明见解析
【解析】
(1)利用导数求得切线的斜率,结合切点坐标求得切线方程.
(2)构造函数,利用导数研究的单调区间和零点,由此判断与的图像的交点个数.
(3)结合(2)以及题意得到,化简得到,利用放缩法以及取对数运算,化简证得成立.
(1)由得切线的斜率为,切点为.
∴切线方程为:,
∴所求切线的一般式方程为.
(2)令由题意可知,的定义域为,
且.
令,得,由,得,可知在
内单调递减,
又,且,
故在内有唯一解,从而在内有唯一解,不妨设为,
则,当时,,∴在内单调递增;
当时,,∴在内单调递减,
因此是的唯一极值点.
令,则当时,,故在内单调递减,
∴当时,,即,
从而,
又因为,∴在内有唯一零点,
又在内有唯一零点1,从而,在内恰有两个零点.
所以与的图像有2交点;
(3)由(2)及题意,即
从而,即,
∵当时,,又,故,
两边取对数,得,
于是,整理得,命题得证.
【题目】2019年6月25日,《固体废物污染环境防治法(修订草案)》初次提请全国人大常委会审议,草案对“生活垃圾污染环境的防治”进行了专项规定.某小区采取一系列措施,宣传垃圾分类的知识与意义,并采购分类垃圾箱.为了了解垃圾分类的效果,该小区物业随机抽取了200位居民进行问卷调查,每位居民对小区采取的措施给出“满意”或“不满意”的评价.根据调查结果统计并做出年龄分布条形图和持不满意态度的居民的结构比例图,如图,在这200份问卷中,持满意态度的频率是0.65.
(1)完成下面的列联表,并判断能否有的把握认为“51岁及以上”和“50岁及以下”的居民对该小区采取的措施的评价有差异
满意 | 不满意 | 总计 | |
51岁及以上的居民 | |||
50岁及以下的居民 | |||
总计 | 200 |
(2)按“51岁及以上”和“50岁及以下”的年龄段采取分层抽样的方法从中随机抽取5份,再从这5份调查问卷中随机抽取2份进行电话家访,求电话家访的两位居民恰好一位年龄在51岁及以上,另一位年龄在50岁及以下的概率.
0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
附表及参考公式:,其中.