题目内容
【题目】如图,为矩形的边上一点,且,将沿折起到,使得.
(1)证明:平面平面;
(2)若,求平面与平面所成的锐二面角的余弦值.
【答案】(1)证明见解析;(2).
【解析】
(1)取,的中点,,连接,,,则,由题意可知,,,从而证明平面,即根据线面垂直的判定定理证明平面,再利用线面垂直的性质定理证明面面垂直即可.
(2)以为原点,,,所在直线为,,轴,建立如图所示的空间直角坐标系.求解平面的法向量,平面的法向量,再根据,计算二面角余弦值,即可.
(1)取,的中点,,连接,,,则
,
,.
又在矩形中
又,平面,平面
平面
平面
又与为梯形的两腰,必相交,平面,平面
平面,
又平面
平面平面.
(2)∵,
∴.
过点作,交与,则,,
以为坐标原点,,,所在直线为,,轴,建立如图所示的空间直角坐标系.
则各点坐标为,,,.
设平面的法向量为,则,
,即,,取,则
设平面的法向量为,则,
,即,,取,则,
即平面与平面所成锐二面角的余弦值为.
【题目】指数是用体重公斤数除以身高米数的平方得出的数字,是国际上常用的衡量人体胖瘦程度以及是否健康的一个标准.对于高中男体育特长生而言,当数值大于或等于20.5时,我们说体重较重,当数值小于20.5时,我们说体重较轻,身高大于或等于我们说身高较高,身高小于170cm我们说身高较矮.
(1)已知某高中共有32名男体育特长生,其身高与指数的数据如散点图,请根据所得信息,完成下述列联表,并判断是否有的把握认为男生的身高对指数有影响.
身高较矮 | 身高较高 | 合计 | |
体重较轻 | |||
体重较重 | |||
合计 |
(2)①从上述32名男体育特长生中随机选取8名,其身高和体重的数据如表所示:
编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
身高 | 166 | 167 | 160 | 173 | 178 | 169 | 158 | 173 |
体重 | 57 | 58 | 53 | 61 | 66 | 57 | 50 | 66 |
根据最小二乘法的思想与公式求得线性回归方程为.利用已经求得的线性回归方程,请完善下列残差表,并求解释变量(身高)对于预报变量(体重)变化的贡献值(保留两位有效数字);
编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
体重 | 57 | 58 | 53 | 61 | 66 | 57 | 50 | 66 |
残差 | 0.1 | 0.3 | 0.9 |
②通过残差分析,对于残差的最大(绝对值)的那组数据,需要确认在样本点的采集中是否有人为的错误,已知通过重新采集发现,该组数据的体重应该为.请重新根据最最小二乘法的思想与公式,求出男体育特长生的身高与体重的线性回归方程.
(参考公式)
,,,,.
(参考数据)
,,,,.
0.10
0.05
0.01
0.005
2.706
3.811
6.635
7.879