题目内容
【题目】已知动点到定点的距离比到轴的距离多.
(1)求动点的轨迹的方程;
(2)设,是轨迹在上异于原点的两个不同点,直线和的倾斜角分别为和,当,变化且时,证明:直线恒过定点,并求出该定点的坐标.
【答案】(1)或;(2)证明见解析,定点
【解析】
(1)设,由题意可知,对的正负分情况讨论,从而求得动点的轨迹的方程;
(2)设其方程为,与抛物线方程联立,利用韦达定理得到,所以,所以直线的方程可表示为,即,所以直线恒过定点.
(1)设,
动点到定点的距离比到轴的距离多,
,时,解得,
时,解得.
动点的轨迹的方程为或
(2)证明:如图,设,,
由题意得(否则)且,
所以直线的斜率存在,设其方程为,
将与联立消去,得,
由韦达定理知,,①
显然,,
,,
将①式代入上式整理化简可得:,
所以,
此时,直线的方程可表示为,
即,
所以直线恒过定点.
练习册系列答案
相关题目