题目内容
【题目】定义:若对定义域内任意x,都有(a为正常数),则称函数为“a距”增函数.
(1)若,(0,),试判断是否为“1距”增函数,并说明理由;
(2)若,R是“a距”增函数,求a的取值范围;
(3)若,(﹣1,),其中kR,且为“2距”增函数,求的最小值.
【答案】(1)见解析; (2); (3).
【解析】
(1)利用“1距”增函数的定义证明即可;(2)由“a距”增函数的定义得到在上恒成立,求出a的取值范围即可;(3)由为“2距”增函数可得到在恒成立,从而得到恒成立,分类讨论可得到的取值范围,再由,可讨论出的最小值。
(1)任意,,
因为,, 所以,所以,即是“1距”增函数。
(2).
因为是“距”增函数,所以恒成立,
因为,所以在上恒成立,
所以,解得,因为,所以.
(3)因为,,且为“2距”增函数,
所以时,恒成立,
即时,恒成立,
所以,
当时,,即恒成立,
所以, 得;
当时,,
得恒成立,
所以,得,
综上所述,得.
又,
因为,所以,
当时,若,取最小值为;
当时,若,取最小值.
因为在R上是单调递增函数,
所以当,的最小值为;当时的最小值为,
即 .
练习册系列答案
相关题目