题目内容
【题目】在直角坐标系中,圆的参数方程为(为参数),以为极点,轴非负半轴为极轴建立极坐标系. 直线的极坐标方程是.
(Ⅰ)求圆的极坐标方程和直线的直角坐标方程;
(Ⅱ)射线与圆的交点为,与直线的交点为,求线段的长.
【答案】(Ⅰ)圆:,直线:;(Ⅱ)2.
【解析】
(Ⅰ)首先把圆的参数方程转化为普通方程,再利用普通方程与极坐标方程之间的转化公式即可得到圆的极坐标方程,化简直线的极坐标方程,利用普通方程与极坐标方程之间的转化公式即可得到直线的极坐标方程;
(Ⅱ)设为点的极坐标,由,联立即可,设为点的极坐标,同理即可解得,利用即可求出。
解:(I)利用,把圆的参数方程(为参数)化为,∴,即.
由化简得: ,则直线的直角坐标方程为: ,
(II)设为点的极坐标,由,解得.
设为点的极坐标,由,解得.
∵,∴.
∴.
【题目】运动健康已成为大家越来越关心的话题,某公司开发的一个类似计步数据库的公众号.手机用户可以通过关注该公众号查看自己每天行走的步数,同时也可以和好友进行运动量的PK和点赞.现从张华的好友中随机选取40人(男、女各20人),记录他们某一天行走的步数,并将数据整理如表:
步数 性别 | 0~2000 | 2001~5000 | 5001~8000 | 8001~10000 | >10000 |
男 | 1 | 2 | 4 | 7 | 6 |
女 | 0 | 3 | 9 | 6 | 2 |
(1)若某人一天行走的步数超过8000步被评定为“积极型”,否则被评定为“懈怠型”,根据题意完成下列2×2列联表,并据此判断能否有90%的把握认为男、女的“评定类型”有差异?
积极型 | 懈怠型 | 总计 | |
男 | |||
女 | |||
总计 |
(2)在张华的这40位好友中,从该天行走的步数不超过5000步的人中随机抽取2人,设抽取的女性有X人,求X=1时的概率.
参考公式与数据:
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
K2=,其中n=a+b+c+d.
【题目】“微信运动”已成为当下热门的健身方式,小明的微信朋友圈内也有大量好友参与了“微信运动”,他随机选取了其中的40人(男、女各20人),记录了他们某一天的走路步数,并将数据整理如下:
0~2000 | 2001~5000 | 5001~8000 | 8001~10000 | ||
男 | 1 | 2 | 3 | 6 | 8 |
女 | 0 | 2 | 10 | 6 | 2 |
(1)若采用样本估计总体的方式,试估计小明的所有微信好友中每日走路步数超过5000步的概率;
(2)已知某人一天的走路步数超过8000步时被系统评定为“积极型”,否则为“懈怠型”.根据小明的统计完成下面的列联表,并据此判断是否有以上的把握认为“评定类型”与“性别”有关?
积极型 | 懈怠型 | 总计 | |
男 | |||
女 | |||
总计 |
附:
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
【题目】某桶装水经营部每天的房租,人员工资等固定成本为200元,每桶水的进价是5元,销售价(元)与日均销售量(桶)的关系如下表,为了收费方便,经营部将销售价定为整数,并保持经营部每天盈利.
6 | 7 | 8 | 9 | 10 | 11 | 12 | … | |
480 | 440 | 400 | 360 | 320 | 280 | 240 | … |
(1)写出的值,并解释其实际意义;
(2)求表达式,并求其定义域;
(3)求经营部利润表达式,请问经营部怎样定价才能获得最大利润?