题目内容
【题目】如图,一条小河岸边有相距的两个村庄(村庄视为岸边上两点),在小河另一侧有一集镇(集镇视为点),到岸边的距离为,河宽为,通过测量可知,与的正切值之比为.当地政府为方便村民出行,拟在小河上建一座桥(分别为两岸上的点,且垂直河岸,在的左侧),建桥要求:两村所有人到集镇所走距离之和最短,已知两村的人口数分别是人、人,假设一年中每人去集镇的次数均为次.设.(小河河岸视为两条平行直线)
(1)记为一年中两村所有人到集镇所走距离之和,试用表示;
(2)试确定的余弦值,使得最小,从而符合建桥要求.
【答案】(1),;(2)当时,符合建桥要求.
【解析】
(1)利用正切值之比可求得,;根据可表示出和,代入整理可得结果;(2)根据(1)的结论可得,利用导数可求得时,取得最小值,得到结论.
(1)与的正切值之比为
则,
,
,
,
(2)由(1)知:,
,
令,解得:
令,且
当时,,;当时,,
函数在上单调递减;在上单调递增;
时,函数取最小值,即当时,符合建桥要求
练习册系列答案
相关题目