题目内容
【题目】通过随机询问名不同性别的大学生在购买食物时是否看营养说明,得到如下列联表:
男 | 女 | 总计 | |
读营养说明 | |||
不读营养说明 | |||
总计 |
附:
(1)由以上列联表判断,能否在犯错误的概率不超过的前提下认为性别和是否看营养说明有关系呢?
(2)从被询问的名不读营养说明的大学生中随机选取名学生,求抽到女生人数的分布列及数学期望.
【答案】(1) 在犯错误的概率不超过的前提下认为“性别与读营养说明之间有关系”.
(2)分布列见解析;.
【解析】分析:(1)先根据卡方公式计算,再与参考数据比较作判断,(2)先确定随机变量得取法,再利用组合数求对应概率,列表得分布列,最后根据数学期望公式求期望.
详解: (1)由计算可得的观测值为
因为,而
所以在犯错误的概率不超过的前提下认为“性别与读营养说明之间有关系”
(2)的取值为
,
,
,
的分布列为
的数学期望
【题目】在地面上同一地点观测远方匀速垂直上升的热气球,在上午10点整热气球的仰角是,到上午10点20分的仰角变成.请利用下表判断到上午11点整时,热气球的仰角最接近哪个度数( )
0.5 | 0.559 | 0.629 | 0.643 | 0.656 | 0.669 | 0.682 | 0.695 | 0.707 | |
0.866 | 0.829 | 0.777 | 0.766 | 0.755 | 0.743 | 0.731 | 0.719 | 0.707 | |
0.577 | 0.675 | 0.810 | 0.839 | 0.869 | 0.900 | 0.933 | 0.966 | 1.0 |
A. B. C. D.
【题目】全世界越来越关注环境保护问题,某监测站点于2018年1月某日起连续天监测空气质量指数(),数据统计如下:
空气质量指数() | |||||
空气质量等级 | 空气优 | 空气良 | 轻度污染 | 中度污染 | 重度污染 |
天数 | 20 | 40 | 10 | 5 |
(1)根据所给统计表和频率分布直方图中的信息求出,的值,并完成频率分布直方图;
(2)由频率分布直方图,求该组数据的众数和中位数;
(3)在空气质量指数分别属于和的监测数据中,用分层抽样的方法抽取天,再从中任意选取天,求事件“两天空气都为良”发生的概率.