题目内容
本小题满分16分)已知函数
(a为常数).
(Ⅰ)如果对任意
恒成立,求实数a的取值范围;
(Ⅱ)设实数
满足:
中的某一个数恰好等于a,且另两个恰为方程
的两实根,判断①
,②
,③
是否为定值?若是定值请求出:若不是定值,请把不是定值的表示为函数
,并求
的最小值;
(Ⅲ)对于(Ⅱ)中的
,设
,数列
满足
,且
,试判断
与
的大小,并证明.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141549915819.gif)
(Ⅰ)如果对任意
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141549931678.gif)
(Ⅱ)设实数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141549947366.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141549947366.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141549993315.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141550009379.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141550025415.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141550040420.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141550056269.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141550056269.gif)
(Ⅲ)对于(Ⅱ)中的
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141550056269.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141550118698.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141550134242.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141550149442.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141550243417.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141550259314.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141550446227.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141550461206.gif)
(Ⅰ)a<-2(Ⅱ)同解析(Ⅲ)
<![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141550461206.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141550446227.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141550461206.gif)
(Ⅰ)![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141550508728.gif)
对
恒成立,
又
恒成立,
对
恒成立,
又
,
…
(Ⅱ)由
得:
,不妨设
,则q,r恰为方程两根,由韦达定理得:①![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141550758579.gif)
②![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231415508511267.gif)
③而![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141550898613.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141550992631.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141551054475.gif)
设
,求导得:![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141551132693.gif)
当
时,
递增;当
时,
递减;
当
时,
递增,
在
上的最小值为![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141551304851.gif)
(Ⅲ)
如果
,
则![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141551351946.gif)
在
为递增函数,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231415514442022.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231415516631059.gif)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141550508728.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141550524547.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141550539403.gif)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141550555285.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141550571285.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141550539403.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141550633262.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141550649425.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141550664252.gif)
(Ⅱ)由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141550695644.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141550711284.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141550727241.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141550758579.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141550773125.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231415508511267.gif)
③而
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141550898613.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141550992631.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141551054475.gif)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141551085570.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141551132693.gif)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141551148412.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141551163525.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141551179420.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141551195534.gif)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141551210320.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141551163525.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141551241389.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141551257266.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141551304851.gif)
(Ⅲ)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141551319976.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141551335417.gif)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141551351946.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141551366292.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141551382262.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231415514442022.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231415516631059.gif)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231415517091105.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141551772358.gif)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目