题目内容
如图:在正三棱柱ABC-A1 B1 C1中,AB=AA1 | 3 |
(Ⅰ)求证:面AEF⊥面ACF;
(Ⅱ)求三棱锥A1-AEF的体积.
分析:(Ⅰ)欲证面ADF⊥面ACF,根据面面垂直的判定定理可知在平面ADF内一直线与平面ACF垂直,根据题意易证CA⊥AD,而FC⊥面ACD,则CA是FA在面ACD上射影,FA∩AC=A,满足线面垂直的判定定理,则DA⊥面ACF,而DA?面ADF,满足面面垂直的判定定理.
(Ⅱ)先根据VA1-AEF=VE-AA1F将所求的体积进行转化,在面A1B1C1内作B1G⊥A1C1,垂足为G,求出B1G,然后利用体积公式进行求解即可.
(Ⅱ)先根据VA1-AEF=VE-AA1F将所求的体积进行转化,在面A1B1C1内作B1G⊥A1C1,垂足为G,求出B1G,然后利用体积公式进行求解即可.
解答:解:(Ⅰ)∵BE:CF=1:2
∴DC=2BD,∴DB=BC,
∵△ABD是等腰三角形,
且∠ABD=120°,∴∠BAD=30°,
∴∠CAD=90°,
∵FC⊥面ACD,
∴CA是FA在面ACD上射影,
且CA⊥AD,∵FA∩AC=A,
DA⊥面ACF,DA?面ADF
∴面ADF⊥面ACF.
(Ⅱ)解:∵VA1-AEF=VE-AA1F.
在面A1B1C1内作B1G⊥A1C1,垂足为G.
B1G=
面A1B1C1⊥面A1C
∵B1G⊥面A1C,
∵E∈BB1,而BB1∥面A1C,
∴三棱柱E-AA1F的高为B1G=
S△AA1F=AA1•
=
∴VA1-AEF=VE-AA1F=
∴DC=2BD,∴DB=BC,
∵△ABD是等腰三角形,
且∠ABD=120°,∴∠BAD=30°,
∴∠CAD=90°,
∵FC⊥面ACD,
∴CA是FA在面ACD上射影,
且CA⊥AD,∵FA∩AC=A,
DA⊥面ACF,DA?面ADF
∴面ADF⊥面ACF.
(Ⅱ)解:∵VA1-AEF=VE-AA1F.
在面A1B1C1内作B1G⊥A1C1,垂足为G.
B1G=
| ||
2 |
面A1B1C1⊥面A1C
∵B1G⊥面A1C,
∵E∈BB1,而BB1∥面A1C,
∴三棱柱E-AA1F的高为B1G=
| ||
2 |
| ||
2 |
AC |
2 |
3a2 |
2 |
∴VA1-AEF=VE-AA1F=
| ||
4 |
点评:本小题考查空间线面关系,正三棱柱的性质,逻辑思维能力,空间想象能力运算能力.
练习册系列答案
相关题目
如图,在正三棱柱ABC-A1B1C1中,AB=1,若二面角C-AB-C1的大小为60°,则点C到平面C1AB的距离为( )
A、
| ||||
B、
| ||||
C、
| ||||
D、1 |