题目内容
【题目】某地随着经济的发展,居民收入逐年增长,如表是该地一建设银行连续五年的储蓄存款(年底余额),如表1
年份x | 2011 | 2012 | 2013 | 2014 | 2015 |
储蓄存款y(千亿元) | 5 | 6 | 7 | 8 | 10 |
为了研究计算的方便,工作人员将上表的数据进行了处理,得到表2:
时间代号t | 1 | 2 | 3 | 4 | 5 |
z | 0 | 1 | 2 | 3 | 5 |
(1)求z关于t的线性回归方程;
(2)通过(1)中的方程,求出y关于x的回归方程;
(3)用所求回归方程预测到2010年年底,该地储蓄存款额可达多少?
附:对于线性回归方程,
其中, .
【答案】(1);(2);(3)3.6千亿.
【解析】
(1)利用最小二乘法求出z关于t的线性回归方程;
(2)通过,把z关于t的线性回归方程化成y关于x的回归方程;
(3)利用回归方程代入求值。
解:(1)由表中数据,计算(1+2+3+4+5)=3,
(0+1+2+3+5)=2.2,
tizi=1×0+2×1+3×2+4×3+5×5=45,
12+22+32+42+52=55,
所以1.2,
b2.2﹣1.2×3=﹣1.4,
所以z关于t的线性回归方程为z=1.2t﹣1.4;
(2)把t=x﹣2010,z=y﹣5代入z=1.2t﹣1.4中,得到:
y﹣5=1.2(x﹣2010)﹣1.4,
即y关于x的回归方程是y=1.2x﹣2408.4;
(3)由(2)知,计算x=2010时,y=1.2×2010﹣2408.4=3.6,
即预测到2010年年底,该地储蓄存款额可达3.6千亿.
【题目】近年电子商务蓬勃发展,平台对每次成功交易都有针对商品和快递是否满意的评价系统.从该评价系统中选出200次成功交易,并对其评价进行统计,网购者对商品的满意率为0.70,对快递的满意率为0.60,商品和快递都满意的交易为80
(Ⅰ)根据已知条件完成下面的列联表,并回答能否有99%认为“网购者对商品满意与对快递满意之间有关系”?
对快递满意 | 对快递不满意 | 合计 | |
对商品满意 | 80 | ||
对商品不满意 | |||
合计 | 200 |
(Ⅱ)若将频率视为概率,某人在该网购平台上进行的3次购物中,设对商品和快递都满意的次数为随机变量,求的分布列和数学期望.
附:,
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |