题目内容

设函数f(x)的定义域为R,当x>0时,f(x)>1,且对任意x,y∈R,都有f(x+y)=f(x)·f(y).

(Ⅰ)求证:f(0)=1;

(Ⅱ)求证:f(x)在R上是增函数;

(Ⅲ)设集合A={(x,y)|f(x2)·f(y2)<f(1)},B={(x,y)|f(x+y+c)=1,c∈R},若A∩B=,求c的取值范围.

答案:
解析:

  (Ⅰ)证明:为使f(x+y)=f(x)·f(y)中出现f(0),设x=0,y=1

  (Ⅰ)证明:为使f(x+y)=f(x)·f(y)中出现f(0),设x=0,y=1.

  则f(0+1)=f(0)·f(1),∴f(1)=f(0)·f(1),∵x>0时,f(x)>1,

  ∴f(1)>1,∴f(0)=1.

  (Ⅱ)证明:设x1,x2∈R,且x1<x2,则x2-x1>0,

  f(x2)=f[x1+(x2-x1)]=f(x1)·f(x2-x1),∵f(x2-x1)>1,

  若x1>0则f(x1)>1>0;若x1=0则f(x1)=1>0;

  当x1<0时,有f(x1)·f(-x1)=f(x1-x1)=f(0)=1.

  又∵f(-x1)>1,∴0<f(x1)<1,∴对一切x1∈R,有f(x1)>0,

  ∴f(x2)=f(x1)·f(x2-x1)>f(x1),故命题得证.

  (Ⅲ)∵f(x2)·f(y2)<f(1),∴f(x2+y2)<f(1),∴x2+y2<1.

  B:由单调性知f(x+y+c)=f(0),∴x+y+c=0.

  ∵A∩B=,∴由图形分析知:只要圆x2+y2=1与直线x+y+c=0相离或相切,

  ∴≥1,∴c≥或c≤-


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网