题目内容

设函数f(x)=ax2+bx+1(a、b∈R)

(1)若f(-1)=0,则对任意实数均有f(x)≥0成立,求f(x)的表达式.

(2)在(1)条件下,当x∈[-2,2],g(x)=xf(x)-kx单调递增,求实数k的取值范围.

答案:
解析:

  (1)f(x)=x2+2x+1

  (1)f(x)=x2+2x+1

  (2)g(x)=xf(x)-kx=x(x2+2x+1)-kx=x3+2x2+(1-k)x

  (x)=3x2+4x+1-k≥0在[-2,2]上恒成立

  ≥01-k≥k≤-


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网