题目内容
已知椭圆的离心率为,F为椭圆在x轴正半轴上的焦点,M、N两点在椭圆C上,且,定点A(-4,0).
(1)求证:当时.,;
(2)若当时有,求椭圆C的方程;
(3)在(2)的条件下,当M、N两点在椭圆C运动时,当 的值为6时, 求出直线MN的方程.
(1)见解析
(2)椭圆C的方程为
(3)直线的MN方程为,或。
解析:
(1)设,
则,
当时,,
由M,N两点在椭圆上,
若,则(舍去), (4分)
。(5分)
(2)当时,不妨设 (6分)
又,, (8分)
椭圆C的方程为。 (9分)
(3)因为=6, (10分)
由(2)知点F(2,0), 所以|AF|=6, 即得|yM-yN|= (11分)
当MN⊥x轴时, |yM-yN|=|MN|=, 故直线MN的斜率存在, (12分)
不妨设直线MN的方程为
联立,得,
=, 解得k=±1。
此时,直线的MN方程为,或。 (14分)
练习册系列答案
相关题目
已知椭圆的离心率为e,两焦点分别为F1、F2,抛物线C以F1为顶点、F2为焦点,点P为抛物线和椭圆的一个交点,若e|PF2|=|PF1|,则e的值为( )
A、
| ||||
B、
| ||||
C、
| ||||
D、以上均不对 |
已知椭圆的离心率为
,焦点是(-3,0),(3,0),则椭圆方程为( )
1 |
2 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|