题目内容

【题目】已知椭圆的离心率为为椭圆的左、右焦点,为椭圆上的任意一点,的面积的最大值为1,为椭圆上任意两个关于轴对称的点,直线轴的交点为,直线交椭圆于另一点.

(1)求椭圆的标准方程;

(2)求证:直线过定点.

【答案】(1);(2)见解析.

【解析】试题分析:(1)由离心率及的面积的最大值为1,即可求得,从而求得椭圆的标准方程;(2),,且,由题意得且直线的斜率必存在,设,与椭圆方程联立方程组,结合韦达定理,得,即可表示直线,根据对称性可知直线过的定点必在轴上,从而求出定点坐标.

试题解析:(1)∵当M为椭圆C的短轴端点时,的面积的最大值为1

∴椭圆C标准方程为:

(2)设,且

由题意知的斜率必存在,设,代入,由.

斜率必存在,

由对称性易知直线过的定点必在轴上,则当时,得 即在的条件下,直线AE过定点(10.

练习册系列答案
相关题目

【题目】如图,在四棱锥中,底面为菱形, 平面 分别是 的中点.

(1)证明:

(2)设为线段上的动点,若线段长的最小值为,求二面角的余弦值.

【答案】(1)见解析;(2)

【解析】试题分析:(1)证明线线垂直则需证明线面垂直,根据题意易得然后根据等边三角形的性质可得,因此平面,从而得证(2)先找到EH什么时候最短,显然当线段长的最小时, ,在中, ,∴,由中, ,∴.然后建立空间直角坐标系,写出两个面法向量再根据向量的夹角公式即可得余弦值

解析:(1)证明:∵四边形为菱形,

为正三角形.又的中点,∴.

,因此.

平面 平面,∴.

平面 平面

平面.又平面,∴.

(2)如图, 上任意一点,连接 .

当线段长的最小时, ,由(1)知

平面 平面,故.

中,

中, ,∴.

由(1)知 两两垂直,以为坐标原点,建立如图所示的空间直角坐标系,又 分别是 的中点,

可得

所以 .

设平面的一法向量为

因此

,则

因为 ,所以平面

为平面的一法向量.又

所以 .

易得二面角为锐角,故所求二面角的余弦值为.

型】解答
束】
20

【题目】2018湖北七市(州)教研协作体3月高三联考已知椭圆 的左顶点为,上顶点为,直线与直线垂直,垂足为点,且点是线段的中点.

I)求椭圆的方程;

II)如图,若直线 与椭圆交于 两点,点在椭圆上,且四边形为平行四边形,求证:四边形的面积为定值.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网