题目内容
【题目】为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)= (0≤x≤10),若不建隔热层,每年能源消耗费用为8万元.设f(x)为隔热层建造费用与20年的能源消耗费用之和.
(1)求k的值及f(x)的表达式.
(2)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.
【答案】
(1)解:设隔热层厚度为xcm,由题设,每年能源消耗费用为 .
再由C(0)=8,得k=40,
因此 .
而建造费用为C1(x)=6x,
最后得隔热层建造费用与20年的能源消耗费用之和为
(2)解: ,令f'(x)=0,即 .
解得x=5, (舍去).
当0<x<5时,f′(x)<0,当5<x<10时,f′(x)>0,故x=5是f(x)的最小值点,对应的最小值为 .
当隔热层修建5cm厚时,总费用达到最小值为70万元
【解析】(1)由建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)= ,若不建隔热层,每年能源消耗费用为8万元.我们可得C(0)=8,得k=40,进而得到 .建造费用为C1(x)=6x,则根据隔热层建造费用与20年的能源消耗费用之和为f(x),我们不难得到f(x)的表达式.(2)由(1)中所求的f(x)的表达式,我们利用导数法,求出函数f(x)的单调性,然后根据函数单调性易求出总费用f(x)的最小值.
练习册系列答案
相关题目